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We present a Bethe approximation to study lattice models of linear polymers. The approach is variational in
nature and based on the cluster variation method. We focus on a moddiwatimearest-neighbor attractive
energye, between a pair of nonbonded monoméiig,a bending energy,, for each pair of successive chain
segments that are not collinear. We determine the phase diagram of the system as a function of the reduced
temperaturé=T/¢€, and of the parametet=¢,/¢, . We find two different qualitative behaviors, on varying
t. For small values ok the system undergoes écollapse from an extended coil to a compact globule;
subsequently, on decreasing furtlethere is a first order transition to an anisotropic phase, characterized by
global orientational order. For sufficiently large valuesxpinstead, there is directly a first order transition
from the coil to the orientational ordered phase. Our results are in good agreement with previous Monte Carlo
simulations and contradict in some aspects mean-field theory. In the limit of Hamiltonian walks, our approxi-
mation recovers results of the Flory-Huggins theory for polymer melfi84063-651X98)51111-7

PACS numbse(s): 05.70.Fh, 36.20.Ey, 64.60.Cn

The configurational statistics of a long, linear polymer in  In the present work we consider a Bethe approximation
solution has often been modeled by a self-avoiding wallfor lattice homopolymers. Our aim is twofold: first, we in-
(SAW) on a lattice[1,2]. The self-avoiding constraint takes troduce a method to deal with SAW problems; second, we
into account excluded-volume effects. Attractive van derpresent results concerning the phase diagram of an isolated
Waals interactions between monomers are also general§emiflexible chain. In the approach to the problem we have
considered. They are included by assigning a negative erfollowed the cluster variation methd€VM) [11-13. This
ergy — €, to each pair of nearest-neighbor monomers on thdS & closed form approximation, which is known to give ex-
lattice, provided they are not consecutive along the chainCellent results for the phase diagram of spin syst¢idg.

These interactions become relevant at low enough tempera—-he afp'roximﬁ'tic;]n scheme ij deterlmir]rer:j bé’\}?/le Iﬁrgest clus-
tures, causing a collapse transition of the polyr&r The ters of sites which are treated exactly. The allows us to

transition point is called point and it separates a high tem- write an approximate expression for the free energy of the

system, as a function of the probability of occurrence of all
perature expanded structure from a low temperature compagt ~ - ) : ; .
possible configurations of the basic cluster. This free energy

glolggllsr.ners with a local stiffness have also been considerecgaS ther_m o be.minim!zed, subject 0 consist.ency conditic_)ns
i _ ) ; ) n the distribution variables. The pair approximation consid-
by including a bending energy, which favors straight seg- o5 5 nearest-neighbor pair of lattice sites and it corresponds
ments of the chaif4-8]. The semiflexible model has at- i, the Bethe approximation.

tracted much interest in the low temperature phase and in e represent a polymer as a SAW ordalimensional
particular in the limit of Hamiltonian walks, where the path hypercubic lattice with/= L sites. Pairs of nonconsecutive
is forced to visit all sites of the lattice. In this case, it is vertices a|0ng the chain interact through an attractive
believed to describe the melting of polymers chdiis(see  nearest-neighbor potentia) . Stiffness of the chain is incor-
also[9]). The system undergoes a phase transition betweengorated by attributing an energy penadfyto each turr(cor-
disordered(liquid) phase and an orderddolid) phase, the nen of the walk. LetT be the absolute temperature agd
latter being characterized by anisotropic orientational order=1/kgT the inverse temperature. In the following we will
More recently, the semiflexible model has attracted reneweddopt the notatiom= B¢, , t="T/¢, andx=¢€,/€, . The par-
interest because of the possible connection with the proteitition function of the system is

folding problem[6,7]. In this spirit, each link of the walk

represents an-helical turn(ca. 3 amino acidsand the cur- Zn= 2 e[Noor( &) ~XNeo(S)] (1)
vature term mimics the tendency to form secondary struc- {SAW}

tures. The attractive energy between monomers models the

hydrophobic effect, which is supposed to be the main drivingVhere {SAW} denotes the ensemble of &ll-step SAW;
force for the folding transitioi10]. col(S) andN¢(S) are respectively the number of contacts

and corners in wall§. Introducing a monomer fugacity the
grand canonical partition function reads therefore
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probability walk mined only by the following conditionga) the site is visited
variables conflgurations multiplicity by the path(b) the nearest-neighbor pair is joined directly by
the path. The independent configurations are reported sche-
matically in Fig. 1, together with their multiplicity of occur-

(@) rence. Following the notation of Fig. 1, the free energy of the
s, > -‘!‘-‘:L system(2), in the pair approximation, can be writt¢h3]
F -1 —1)%(q—2)?

BF _ a(q )(In 28— a(a—1)%(qa-2) wopyt (1
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whereq=2d is the coordination number of the lattice and
\ mg(i) and m,(i) stand respectively for the multiplicity of
P, > < [M] site and pair configurations. Normalization of the distribu-

2 tions and consistency conditions on the probability variables
require respectively

P, > . (q-1(q-2) q(g—1)

S=1-——— 5 @
P. o o 1 and
P g1

FIG. 1. Schematic representation of independansite and(b)
pair configurations, in the case of zero stiffnegs=0Q). The con- 25, 2
tinuous line represents the path visiting a sgiez2d is the coordi- P2= (q—1)(q— 2)_ (q—1)(q—2) P3
nation number of the lattice. )
where the sum is over all possible lengti®f the walk. pa=1— a@-1) S — (a-1(@=2) Ps.

The lattice model1) [or equivalently(2)] has been the 2 2

object of recent investigatio$—8]. A mean-field analysis This | ith onl iational
[6] predicts ad-collapse transition at a temperaturgeinde- Is leaves us with only two variational parameters, &g.,

pendent ofx. Another transition should occur at lower tem- ar?d.p3. S_ubstituting Eqs(4) and(5) into _Eq. (3) and mini-
perature. It is a discontinuous melting transition from a dis-Mizing with respect tes, andps we obtain the stable phase

ordered globule to an ordered “crystalline” phase. Thedt 2 giverzandw. We report the complete phase diagram for
melting temperaturé,, increases with, although in mean- d=3 In Fig. 2. The polymer is a critical system along the
field approximationt,<t, for any value ofx. This picture transition linez,(w). This line separates a chain with zero
has been partly contradicted by heuristic argumiig] and density[s; =0 for z<z.(w)] from a cha|.n with finite density

by Monte Carlo simulationd7,8]. Indeedt, appears to [s1#0 for z>z,(w)]. The continuous line represents a sec-

slightly increase withx. Most importantlyt,. seems to grow o_nd order f[ransmon and the average number of monomers
diverges with a power law astends toz,. The broken line

with stiffness and it does not reach a finite asymptotic value,;"" | - i
This implies that the line of the melting transition hits the Is instead a first order transition and the density of monomers

line of the § collapse. For sufficiently high values rfthere ~ Makes a finite jump az.. The cross denotes the tricritical
is therefore a direct first order transition from the open coil toPiNt and it corresponds to thepoint [15]. In the casgff
the ordered phase. The triple point is found to be approxiPurée SAW (@=0) the connectivity constant ig=z;"
mately atx=13[7]. =2d—1. This result would have been expected by studying
The formulation of the CVM given by Afi13] is a par- SAW on a Bethe lattice and it should be compared, for in-
ticularly convenient starting point for our analysis. We first Stance, withu~2.64[16] and u~4.68[17], obtained from
illustrate the method by treating in some detail the simplef€Xact enumerations respectively @2 andd=3. In our
case of zero stiffnessx0). Lets; andp; be the distribu- frameworkz; does not depend on, as long as»<<w,. This
tion variables assigned respectively to each site and pair cof certainly an artifact of the approximation. It can be as-
figurations. One should in principle distinguish among all thecribed to the fact that, after minimization s, p,~s; in
possible configurations which are not related by symmetryhe limit of s, going to zero. As a consequence, there is no
operations. Ind=2 there are, for instance, three single siteterm in Eq.(3) proportional tow that contributes in locating
and 11 pair independent configurations. In fact we have verithe minimum of the free energy arousg=0. Nonetheless
fied that in the particular case=0 they can be grouped into the estimates we obtain for the point o' are a better
a smaller number of nonequivalent classes. These are detexpproximation to the available numerical values, with re-
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FIG. 2. Phase diagram of the system as a function ahdz, in FIG. 3. Phase diagram of the system as a functiox ahdt.
the case of zero stiffnesg£ 0). The average length of the polymer The solid line denotes thé transition from the coil(C) to the
is finite (infinite) in region I(I1). The solid(dashedlline is a second globule (G). The dashed line represents the first order transition to
(first) order transition. The cross marks the ftricritical poimiy(  the solid(S). The triple point is ak~8.8 andt~4.5. See Fig. 3 in
~0.2231 andz,=0.2). [7] and Fig. 8 in[8] for comparison with Monte Carlo simulations.

rived from combinatorial argumenti23]. Neglecting the

& MF) _ . _
spect to mean-field theoryw@ 1/2d [6]): in d=2, w, constant contribution proportional tg,, the analytical ex-

~0.665[18], w{}~0.4055 andw})"™'=0.25; ind=3, )  pression reads
~0.275[19], »{P)~0.2231 andw{M"=0.1667.

In the general case+ 0 Egs.(3)—(5) must be generalized BFen (1—(2/q))~"@2-D
to include the curvature energy and the possibility of an an- v M 1+ (g—2)exp —wX) |’
isotropic phase. In this case it is not possible to group con-
figurations as in Fig. 1 and one has to face a complex miniAt low temperaturd=g; competes for stability with the local
mization problem. An efficient way of doing it numerically minimum associated to the ordered phase, which has strictly
is by means of the natural iteration metHd®]. The result- Fo=0 in our approach. A first order phase transition takes
ing phase diagram is reported in Fig. 3, as a functionafd therefore place at
t for d= 3. The fugacityz is fixed to its critical valuez,(x,t).

This condition assures we are studying a polymer in the limit
of infinite chain length K—<). We find three different
phases: an open coil, a compact globule and an ordered crys-
tal. In our approximation, the latter is just the ground state of i 1
the polymer, having all links perfectly aligned. This is IN particular ford=3 (q=6) we havet;,/x=[In(16/5)] .
known to be not completely correct, as it has been showrﬂ“o‘8.6.’ Wh!Ch corrgspond; to thg s!ope of the_ globule-.sohd
rigorously that, for instance, in the case of Hamiltoniantr‘f’lnSItlon line of Fig. 3, in the Ilmltx—>0._ This \_/alue IS
walks the entropy strictly vanishes only in the lirfit>0 slightly larger than the analogous mean-field estimitéx
[20,21]. The 6-collapse line between the coil and the globulemo'58 [25] _ . .
: . In the casex=0 each HW is equally weighted and the

appears to be independent xfOn the other hand the dis- : . N

. . o o total number of paths is believed to scale /agy= -
continuous melting transition tends to infinity withBeyond From Eq.(6) we therefore obtain
the triple point atx=8.8, there is directly a first order tran- '
sition from the coil to the solid. q-1

The limit T—0 (or z—«) corresponds to Hamiltonian MﬁB):q -2\ " g
walks (HW). In this limit, walks are space filling and con- g d
figurations with vacancies do not contribute to the partitionA mean-field approacfi24], in very good agreement with
function (2). Also, the attractive nearest-neighbor potentialnumerical estimates, yields
€, plays no role as there are precisaely-1 contacts per
monomer. The resulting model is the so-called Flory model
of polymer melting[4]. In this case, we obtain a minimum H
for the free energy in the disordered, compact phase which
coincides with the free energy estimated by using the Floryit is interesting to note that expressi(8) correctly predicts
Huggins approximatioi22]. The latter was originally de- up=1 for d=1, contrary to Eq.9). In order to evaluate

(6)

X
| 9-2
=@ T T—1

Y

th=

2 q/2
) ®
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corrections to mean-field theory in powers of|live have stitutes a substantial improvement with respect to mean-field
formulated the Hamiltonian walk problem through spin vari- theory. Indeed it produces a phase diagram for a semiflexible
ables. This is in close analogy to the de Gennes theorem fgyolymer chain, which is in good agreement with Monte
SAW [26]. By using a suitable high-temperature expansionCarlo simulations. In particular, we find a triple point where
[27] we were then able to calculate the coefficients of thethe ¢ collapse line and the melting transition line meets. In
series up to the third order, extending of one order previougnhe |imit of Hamiltonian walks it recovers results of the

results[28]. We find Flory-Huggins theory for polymer melting, whose variational
q 1 ) nature appears in a transparent shape within our framework.
Uy=— <1+ 5a7 F+> (10 It has the advantage of not requiring any spin or field theo-
e Q= =9 retical representation; rather, it relies directly on the configu-

rations of the system. This last consideration suggests that
the scheme is more general and suitable to be applied to
1 1 other geometrical problems, as, for instance, branched poly-
1+ st ) (1D mers[29] and self-avoiding surfacd80] (see[2] and refer-
ences therein It is plausible that the accuracy of the method
The Bethe approximation therefore correctly recovers resultsan be systematically refined according to the cluster varia-
of the expansior{10) up to orderO(1/q?). tion method, in analogy with spin systems. We expect some
In summary, we have presented a Bethe approximationf the inaccurate features of the pair approximation could be
for lattice models of linear homopolymers. The method contemoved by considering larger basic clusters.

In the limit g—« expression8) specializes to
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