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Bethe approximation for a semiflexible polymer chain
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We present a Bethe approximation to study lattice models of linear polymers. The approach is variational in
nature and based on the cluster variation method. We focus on a model with~i! a nearest-neighbor attractive
energyev between a pair of nonbonded monomers,~ii ! a bending energyeh for each pair of successive chain
segments that are not collinear. We determine the phase diagram of the system as a function of the reduced
temperaturet5T/ev and of the parameterx5eh /ev . We find two different qualitative behaviors, on varying
t. For small values ofx the system undergoes au collapse from an extended coil to a compact globule;
subsequently, on decreasing furthert, there is a first order transition to an anisotropic phase, characterized by
global orientational order. For sufficiently large values ofx, instead, there is directly a first order transition
from the coil to the orientational ordered phase. Our results are in good agreement with previous Monte Carlo
simulations and contradict in some aspects mean-field theory. In the limit of Hamiltonian walks, our approxi-
mation recovers results of the Flory-Huggins theory for polymer melting.@S1063-651X~98!51111-7#

PACS number~s!: 05.70.Fh, 36.20.Ey, 64.60.Cn
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The configurational statistics of a long, linear polymer
solution has often been modeled by a self-avoiding w
~SAW! on a lattice@1,2#. The self-avoiding constraint take
into account excluded-volume effects. Attractive van d
Waals interactions between monomers are also gene
considered. They are included by assigning a negative
ergy 2ev to each pair of nearest-neighbor monomers on
lattice, provided they are not consecutive along the ch
These interactions become relevant at low enough temp
tures, causing a collapse transition of the polymer@3#. The
transition point is calledu point and it separates a high tem
perature expanded structure from a low temperature com
globule.

Polymers with a local stiffness have also been conside
by including a bending energyeh which favors straight seg
ments of the chain@4–8#. The semiflexible model has a
tracted much interest in the low temperature phase an
particular in the limit of Hamiltonian walks, where the pa
is forced to visit all sites of the lattice. In this case, it
believed to describe the melting of polymers chains@4# ~see
also@9#!. The system undergoes a phase transition betwe
disordered~liquid! phase and an ordered~solid! phase, the
latter being characterized by anisotropic orientational ord
More recently, the semiflexible model has attracted renew
interest because of the possible connection with the pro
folding problem@6,7#. In this spirit, each link of the walk
represents ana-helical turn~ca. 3 amino acids! and the cur-
vature term mimics the tendency to form secondary str
tures. The attractive energy between monomers models
hydrophobic effect, which is supposed to be the main driv
force for the folding transition@10#.
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In the present work we consider a Bethe approximat
for lattice homopolymers. Our aim is twofold: first, we in
troduce a method to deal with SAW problems; second,
present results concerning the phase diagram of an isol
semiflexible chain. In the approach to the problem we ha
followed the cluster variation method~CVM! @11–13#. This
is a closed form approximation, which is known to give e
cellent results for the phase diagram of spin systems@14#.
The approximation scheme is determined by the largest c
ters of sites which are treated exactly. The CVM allows us
write an approximate expression for the free energy of
system, as a function of the probability of occurrence of
possible configurations of the basic cluster. This free ene
has then to be minimized, subject to consistency conditi
on the distribution variables. The pair approximation cons
ers a nearest-neighbor pair of lattice sites and it correspo
to the Bethe approximation.

We represent a polymer as a SAW on ad-dimensional
hypercubic lattice withV5Ld sites. Pairs of nonconsecutiv
vertices along the chain interact through an attract
nearest-neighbor potentialev . Stiffness of the chain is incor
porated by attributing an energy penaltyeh to each turn~cor-
ner! of the walk. LetT be the absolute temperature andb
51/kBT the inverse temperature. In the following we w
adopt the notationv5bev , t5T/ev andx5eh /ev . The par-
tition function of the system is

ZN5 (
$SAW%

ev@Ncon~S!2xNcor~S!#, ~1!

where $SAW% denotes the ensemble of allN-step SAW;
Ncon(S) andNcor(S) are respectively the number of contac
and corners in walkS. Introducing a monomer fugacityz, the
grand canonical partition function reads therefore

Z5 (
N51

`

zNZN , ~2!
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where the sum is over all possible lengthsN of the walk.
The lattice model~1! @or equivalently~2!# has been the

object of recent investigations@6–8#. A mean-field analysis
@6# predicts au-collapse transition at a temperaturetu inde-
pendent ofx. Another transition should occur at lower tem
perature. It is a discontinuous melting transition from a d
ordered globule to an ordered ‘‘crystalline’’ phase. T
melting temperaturetm increases withx, although in mean-
field approximationtm,tu for any value ofx. This picture
has been partly contradicted by heuristic arguments@6,8# and
by Monte Carlo simulations@7,8#. Indeed tu appears to
slightly increase withx. Most importantly,tm seems to grow
with stiffness and it does not reach a finite asymptotic val
This implies that the line of the melting transition hits th
line of theu collapse. For sufficiently high values ofx, there
is therefore a direct first order transition from the open coi
the ordered phase. The triple point is found to be appro
mately atx.13 @7#.

The formulation of the CVM given by An@13# is a par-
ticularly convenient starting point for our analysis. We fir
illustrate the method by treating in some detail the simp
case of zero stiffness (x50). Let si and pi be the distribu-
tion variables assigned respectively to each site and pair
figurations. One should in principle distinguish among all t
possible configurations which are not related by symme
operations. Ind52 there are, for instance, three single s
and 11 pair independent configurations. In fact we have v
fied that in the particular casex50 they can be grouped int
a smaller number of nonequivalent classes. These are d

FIG. 1. Schematic representation of independent~a! site and~b!
pair configurations, in the case of zero stiffness (x50). The con-
tinuous line represents the path visiting a site;q52d is the coordi-
nation number of the lattice.
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mined only by the following conditions:~a! the site is visited
by the path,~b! the nearest-neighbor pair is joined directly b
the path. The independent configurations are reported s
matically in Fig. 1, together with their multiplicity of occur
rence. Following the notation of Fig. 1, the free energy of t
system~2!, in the pair approximation, can be written@13#

bF

V
52

q~q21!

2
~ ln z!s12

q~q21!2~q22!2

8
vp21~1

2q!S (
i 51

2

ms~ i !si ln si D 1
q

2 S (
i 51

4

mp~ i !pi ln pi D ,

~3!

whereq52d is the coordination number of the lattice an
ms( i ) and mp( i ) stand respectively for the multiplicity o
site and pair configurations. Normalization of the distrib
tions and consistency conditions on the probability variab
require respectively

s2512
q~q21!

2
s1 ~4!

and

p15
s1

~q21!
,

p25
2s1

~q21!~q22!
2

2

~q21!~q22!
p3 ,

~5!

p4512
q~q21!

2
s12

~q21!~q22!

2
p3 .

This leaves us with only two variational parameters, e.g.,s1
andp3 . Substituting Eqs.~4! and ~5! into Eq. ~3! and mini-
mizing with respect tos1 andp3 we obtain the stable phas
at a givenz andv. We report the complete phase diagram f
d53 in Fig. 2. The polymer is a critical system along th
transition linezc(v). This line separates a chain with ze
density@s150 for z,zc(v)# from a chain with finite density
@s1Þ0 for z.zc(v)#. The continuous line represents a se
ond order transition and the average number of monom
diverges with a power law asz tends tozc . The broken line
is instead a first order transition and the density of monom
makes a finite jump atzc . The cross denotes the tricritica
point and it corresponds to theu point @15#. In the case of
pure SAW (v50) the connectivity constant ism5zc

21

52d21. This result would have been expected by study
SAW on a Bethe lattice and it should be compared, for
stance, withm'2.64 @16# andm'4.68 @17#, obtained from
exact enumerations respectively ind52 and d53. In our
frameworkzc does not depend onv, as long asv,vu . This
is certainly an artifact of the approximation. It can be a
cribed to the fact that, after minimization inp3 , p2;s1

2 in
the limit of s1 going to zero. As a consequence, there is
term in Eq.~3! proportional tov that contributes in locating
the minimum of the free energy arounds150. Nonetheless
the estimates we obtain for theu point vu

(B) are a better
approximation to the available numerical values, with
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spect to mean-field theory (vu
(MF)51/2d @6#!: in d52, vu

'0.665 @18#, vu
(B)'0.4055 andvu

(MF)50.25; in d53, vu

'0.275@19#, vu
(B)'0.2231 andvu

(MF)50.1667.
In the general casexÞ0 Eqs.~3!–~5! must be generalized

to include the curvature energy and the possibility of an
isotropic phase. In this case it is not possible to group c
figurations as in Fig. 1 and one has to face a complex m
mization problem. An efficient way of doing it numericall
is by means of the natural iteration method@12#. The result-
ing phase diagram is reported in Fig. 3, as a function ofx and
t for d53. The fugacityz is fixed to its critical valuezc(x,t).
This condition assures we are studying a polymer in the li
of infinite chain length (N→`). We find three different
phases: an open coil, a compact globule and an ordered c
tal. In our approximation, the latter is just the ground state
the polymer, having all links perfectly aligned. This
known to be not completely correct, as it has been sho
rigorously that, for instance, in the case of Hamiltoni
walks the entropy strictly vanishes only in the limitT→0
@20,21#. Theu-collapse line between the coil and the globu
appears to be independent ofx. On the other hand the dis
continuous melting transition tends to infinity withx. Beyond
the triple point atx.8.8, there is directly a first order tran
sition from the coil to the solid.

The limit T→0 ~or z→`) corresponds to Hamiltonian
walks ~HW!. In this limit, walks are space filling and con
figurations with vacancies do not contribute to the partiti
function ~2!. Also, the attractive nearest-neighbor potent
ev plays no role as there are preciselyd21 contacts per
monomer. The resulting model is the so-called Flory mo
of polymer melting@4#. In this case, we obtain a minimum
for the free energy in the disordered, compact phase wh
coincides with the free energy estimated by using the Flo
Huggins approximation@22#. The latter was originally de-

FIG. 2. Phase diagram of the system as a function ofv andz, in
the case of zero stiffness (x50). The average length of the polyme
is finite ~infinite! in region I ~II !. The solid~dashed! line is a second
~first! order transition. The cross marks the tricritical point (vu

'0.2231 andzu50.2).
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rived from combinatorial arguments@23#. Neglecting the
constant contribution proportional toev , the analytical ex-
pression reads

bFFH

V
5 lnF ~12~2/q!!2~~q/2!21!

11~q22!exp~2vx!G . ~6!

At low temperatureFFH competes for stability with the loca
minimum associated to the ordered phase, which has str
FO50 in our approach. A first order phase transition tak
therefore place at

tm5
x

lnF q22

@12~2/q!#2@~q/2!21#21G . ~7!

In particular ford53 (q56) we havetm /x5@ ln(16/5)#21

'0.86, which corresponds to the slope of the globule-so
transition line of Fig. 3, in the limitx→0. This value is
slightly larger than the analogous mean-field estimate,tm /x
'0.58 @25#.

In the casex50 each HW is equally weighted and th
total number of paths is believed to scale asNHW.mH

N .
From Eq.~6! we therefore obtain

mH
~B!5q

q21

q22 S 12
2

qD q/2

. ~8!

A mean-field approach@24#, in very good agreement with
numerical estimates, yields

mH
~MF !5

q

e
. ~9!

It is interesting to note that expression~8! correctly predicts
mH51 for d51, contrary to Eq.~9!. In order to evaluate

FIG. 3. Phase diagram of the system as a function ofx and t.
The solid line denotes theu transition from the coil~C! to the
globule ~G!. The dashed line represents the first order transition
the solid~S!. The triple point is atx'8.8 andt'4.5. See Fig. 3 in
@7# and Fig. 8 in@8# for comparison with Monte Carlo simulations
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corrections to mean-field theory in powers of 1/q, we have
formulated the Hamiltonian walk problem through spin va
ables. This is in close analogy to the de Gennes theorem
SAW @26#. By using a suitable high-temperature expans
@27# we were then able to calculate the coefficients of
series up to the third order, extending of one order previ
results@28#. We find

mH5
q

e S 11
1

6q22
2

3q3 1...D . ~10!

In the limit q→` expression~8! specializes to

mH
~B!5

q

e S 11
1

6q2 1
1

3q3 1...D . ~11!

The Bethe approximation therefore correctly recovers res
of the expansion~10! up to orderO(1/q2).

In summary, we have presented a Bethe approxima
for lattice models of linear homopolymers. The method co
ys

ys
or
n
e
s

ts

n
-

stitutes a substantial improvement with respect to mean-fi
theory. Indeed it produces a phase diagram for a semiflex
polymer chain, which is in good agreement with Mon
Carlo simulations. In particular, we find a triple point whe
the u collapse line and the melting transition line meets.
the limit of Hamiltonian walks it recovers results of th
Flory-Huggins theory for polymer melting, whose variation
nature appears in a transparent shape within our framew
It has the advantage of not requiring any spin or field th
retical representation; rather, it relies directly on the config
rations of the system. This last consideration suggests
the scheme is more general and suitable to be applie
other geometrical problems, as, for instance, branched p
mers@29# and self-avoiding surfaces@30# ~see@2# and refer-
ences therein!. It is plausible that the accuracy of the metho
can be systematically refined according to the cluster va
tion method, in analogy with spin systems. We expect so
of the inaccurate features of the pair approximation could
removed by considering larger basic clusters.
. G.

.

s.
@1# J. des Cloizeaux and G. Jannink,Polymers in Solution: Their
Modelling and Structure~Clarendon Press, Oxford, 1990!.

@2# C. Vanderzande,Lattice Models of Polymers~Cambridge Uni-
versity Press, Cambridge, 1998!.

@3# P. G. de Gennes,Scaling Concepts in Polymer Physics~Cor-
nell University Press, Ithaca, 1988!.

@4# P. J. Flory, Proc. R. Soc. London, Ser. A234, 60 ~1956!; Proc.
Natl. Acad. Sci. USA79, 4510~1982!.

@5# A. Kolinsky, J. Skolnick, and R. Yaris, J. Chem. Phys.85,
3585 ~1986!; Proc. Natl. Acad. Sci. USA83, 7267~1986!.

@6# S. Doniach, T. Garel, and H. Orland, J. Chem. Phys.105, 1601
~1996!.

@7# U. Bastolla and P. Grassberger, J. Stat. Phys.89, 1061~1997!.
@8# J. P. K. Doye, R. P. Sear, and D. Frenkel, J. Chem. Phys.108,

2134 ~1998!.
@9# J. F. Nagle, P. D. Gujrati, and M. Goldstein, J. Chem. Ph

88, 4599~1984!.
@10# K. A. Dill, Biochem. J.29, 7133~1990!.
@11# R. Kikuchi, Phys. Rev.81, 988 ~1951!.
@12# R. Kikuchi, J. Chem. Phys.60, 1071~1974!; 65, 4545~1976!.
@13# G. An, J. Stat. Phys.52, 727 ~1988!.
@14# See, e.g., contributions by R. Kikuchi, in Prog. Theor. Ph

Suppl. 115, 1 ~1994!; T. Morita, ibid. 115, 27 ~1994!; T.
Tanaka, K. Hirose, and K. Kurati,ibid. 115, 41 ~1994!.
.

.

@15# P. G. de Gennes, J. Phys.~France! Lett. 36, L55 ~1975!.
@16# A. R. Conway and A. J. Guttmann, Phys. Rev. Lett.77, 5284

~1996!.
@17# A. J. Guttmann, J. Phys. A22, 2807~1989!.
@18# P. Grassberger and R. Hegger, J. Phys. I5, 597 ~1995!.
@19# M. C. Tesi, E. J. Janse van Rensburg, E. Orlandini, and S

Whittington, J. Stat. Phys.82, 155 ~1996!.
@20# P. D. Gujrati, J. Phys. A13, L437 ~1980!; J. Stat. Phys.28,

441 ~1982!.
@21# P. D. Gujrati and M. Goldstein, J. Chem. Phys.74, 2596

~1981!.
@22# M. L. Huggins, Ann.~N.Y.! Acad. Sci.43, 1 ~1942!.
@23# J. H. Gibbs and E. A. Di Marzio, J. Chem. Phys.28, 373

~1958!.
@24# H. Orland, C. Itzykson, and C. de Dominicis, J. Phys.~France!

Lett. 46, 353 ~1985!.
@25# J. Bascle, T. Garel, and H. Orland, J. Phys. A25, L1323

~1992!.
@26# P. G. de Gennes, Phys. Lett. A38, 339 ~1972!.
@27# T. Plefka, J. Phys. A15, 1971 ~1982!; A. Georges and J. S

Yedidia, J. Phys. A24, 2173~1991!.
@28# A. M. Nemirovsky and M. D. Coutinho-Filho, J. Stat. Phy

53, 1139~1988!.
@29# P. De Los Rios, S. Lise, and A. Pelizzola~unpublished!.
@30# G. Gonnella, S. Lise, and A. Maritan~unpublished!.


